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A measure of asymmetry for plane convex sets.

Branko Griinbaum

1. Introduction. For any plane convex hcdy(l) K we consider

JZERND'
/ N,

Fig. 1.

partitions of K by straight lines L1-L2-L3' subject to the condition(z)
(see Fig.1.):

(*) 15;14\7i for i=1,2,38,
Let f(K;L,,L,,Lg) = ——X . We are interested in the
yeLigsLig
E, +E,+Eq

functional f(K) defined by

(1) A convex body is a compact convex set with non—empty interior,

(2) We shall denote a convex set and its area by the same letter,
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f(K) = sup {f(K; LI’LZ’L3) | Ll,Lz,I..3 satisfy (*)} .

and we shall prove the following

Theorem. For every plane convex body K
(1 ogfHKILLY,
(ii) f(K)=0 if and only if K has a center of symmetry;
(ii) f(K)= 14, if and only if X is a triangle.

Thus f(K) is a measure of asymmetry (3) for plane convex bodies;
it is obviously an affine-invariant measure of asymmetry.

Our estimate f(K){14, generalizes the well-known result of
Sholander [6](4) that f(K;Ll,Lz,L3) is at most 14 4 if, in addition to (*¥),
the relation E1=E2 =E3 is assumed.

In §2 we shall prove the assertion (i) of the theorem; as a by-
product of the proof we obtain (iii). Assertion (ii) shall be proved in

§3, while §4 contains some remarks and problems.

2. Proof of assertion (i) . . Since f(K) is

obviously non-negative(s’, we shall prove only I(K)é % 4 We begin by
remarking that, by standard compactness arguments, for any given K the
functional f(K;Ll, Lo, L3) assumes a maximal value for certain lines
L,,Ly,Lg, and also that f(K) assumes its maximal value for a certain

(3) See [5] for a summary of results on measures of asymmetry and
references.

(4) Conjectured by R.C. Buck and E.F. Buck [1]; proved also by H.G.
Eggleston [2) (this proof is reproduced in Eggleston‘s books [3, 4]).

(5) The existence of at least one set of lines L, ,L,,L,, satisfying (*) is
a consequence of the existence of sixpartite ]poil?tl Uk and Buck [1);

sixpartite points correspond to the case T =0, Ei=vj for 1,j=1,2, 8.
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convex body K*. Using simple geometric arguments we shall first
determine K' and some properties of the I_.:i‘s which maximize
f(K;Ll,Lz,L3). The analytic determinatioﬁ of the Li's and of f(K*) will
complete the proof of (i) and (iii).

For any given K a necessary condition for the maximum of

f(K,Ll,LZ,L3) is (see Fig.2) L

Fig, 2.

that the segment C1A2 have the same length as A3 Bl' and similarly

Cahsg

for a suitable line Lt through the midpoint A: of A,As we would have

=Ale and C3A1=AzB3. Indeed, if e.g. ClA2>A3Bl. then

*
f(K;L; L,,Lg) >f(K;L,,L,, Lg).

Let now any K, L1'L2'L3 be given and let K* be the triangle with
vertices Dl,Dz,D3 determined by the straight lines 3103' Bzcl. and
Bg4C 1(lee Fig. 3.). Obviously the lines L; satisfy condition (*) with

* *
respect to K, and f(K';L,,L,, Lg) 2f(K;L,L,,Lg). Equality holds here
- if and only if the boundary of K coincides with that of K* in EIUE2UE3.




Fig, 3.
It follows that the maximum of f(K) is assumed for K a triangle.

For a triangle K the maximum of f(K;Ll.Lz,Ls) can be achieved

only if V =Ei for all i, Indeed, if e.g. V1> E; then for a suitable

i
* * * %
triangle K  with vertices Dl' D2,D3, (see Fig. 4.)

it e - <
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*
we would have f(K; L, Ly, Lg) D f(K; L, Ly, Lg).
According to the above, the assertion (i) of the theorem shall be proved if

we show that for all lines L,,L,.Lg, s8uchthat (in the notatiomsof Fig. 5.)

B,
;[_,I Cl/ Az x
/v2 / E, nyn
D2 /B3 Yz 3

Fig. 5. Lz

Ei=vi for i=1,2,3, and -

(**) CiAg =438, CyA3®AB, , C3hy = A, By,

the inequality 24T ( E,+E,1E 3 holds, We find it convenient to prove the
stronger statement, viz. 8 T<E, provided (**)  holds and

V1 = Elg Ej , §=2,8, with no assumption on Vo and V3 . For simplicity

of computation we take T (and L1,L2.L3) fixed as indicated in Fig. 6, and
proceed as follows (assuming, without loss of generality, that a>b).




C3'(- B, 0)

M

—[ Dl =(x°, yo)

First we find

1+c

X = = [a(1+c)3b(a-c) ]
° (1+c)® = (a-c)(b-c)
1+c
= b(1+c)+a(b-c) I
Yo (1+c)° - (a-c) (b-c)[ !

From E1= V1 it follows that

(*#%) (a-b)2 c2 + 2[a(1+a)#b(14b)]c - [ab(2+a+b)Hatb+ar)(ab- 1)]=0;




similarly, E 3 )E 1 implies b(l+c)+c ; atbtab and therefore c¢ 3 a.

Combining this inequality with (***) and simplhifying, it follows that

(s23%) 342242 (b(222-1);

together with b<a this implies a3-a2-2a ) 0.

Since a>) we obtain a.? 2.

Now, as easily checked,

3.2
_8_":’_‘;__ > 2 for 32 2,

2a2-1
and therefore (s*%%) yields a>b>2. But then E, 2> 4 = 8T,

as claimed in (i). Equality holds if and only if a-b-2; then ¢-2, and
Ei=Vi= 4, T = -;. This establishes (iii).

3. Proof of assertion (ii), It is well known that a plane convex body K

is centrally symmetric if and only if all the straight lines which bisect the
area of K are concurrent (at the center of K).. Therefore, if K is not
centrally symmetric there exists three non-concurrent lines Ll‘ Lz.Ls,
each of which bisects the area of K. Obviously T 0, and since the

Li ‘s are area-bisects of K we have ( in the notation of Fig. 17.) V1=T+Ei

A

A




Fig. 1. \L
2

for i=1,2,8; thus Vi)Ei , condition (*) is fulfilled, and

There remains to be shown that f(K)=0 for centrally
symmetric K. Suppose that, on the contrary, this is not
true, i.e. that there exists & centrally symmetric K and
lines L,,L,,Lg such that f(l(-;Ll,Lz,Ls) >0. Compactness
arguments again establish the existence of extremal K and
Li ‘s.

With regard to the possible positions of the center 0 of
K relative to Ll'Lz'LS' it is immediate that 0 can not belong
to T orto E;UE,UE;. Indeed, in the first case (see Fig. 8)

each of the linea Mi thrﬂugh 0 pmx‘o.llei‘I to I.,1 bisects the area
/
2 s/ 3




of K, and therefore

E1+v2+v <V, +E

3 SV TE,YE

3

V +E,+V LB +V,+E

2 2 73

V HV tEGSE B, 1V,

with strict inequality at least in one of the relations; adding the three

inequalities we obtain V1+V2+V3 { E;+E,+Eq, in contradictionto (%),

The possibility that 0 belongs, e.g., to E1 is at once contradicted
by the condition V1> E, (see Fig. 8.),

Fig. 9.

In order to dispose of the remsaining possibility let us assume that 0

*

belongs to V1 (see Fig. 10,). Let B {° C: , be the points symmetric

to Bi' Ci' with respect to the center 0. Denote by P the parallelo-
gram with vertices P ,P,,P,,Pg whose sides are determined by the lines

*® ®x % * . .
CZBS , B2 C3 R B3 C2 . BZ C3 . Then f{(K; Ll'LZ'LS )_Z_-f(P,Ll,Lz,Ls)




Fig. 10, Lg

- and therefore we may restrict our attention to parallelograms,

Assuming the configuration to yield maximal f(P,Ll,Lz, L3) we have

(as shown in §2) glAa =A, C, (see Fig, 11.) ’L;‘

P

1 AN

Fig. 11.
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1 1

L *
and by P (or P,), it follows that f(P,L,,L,,Lg )Sf(P,L,, Ly, Lg). (Note

Substituting for L, the line L] determined by the midpoint A] of A, Ag

* . _
thaf if Ly,L,, Ly satisfy (%), sodo L, , Ly, Lg,) Butif C,=P (or B,=P,),
then C3A1 *A,B, obviously contradicts (*). The contradiction reached

completes the proof of (ii).

4. Remarks., (a) Using the notations of _’Sl, let g(K;Ll,Lz,L3) =
T T T R
max {-E-i-, —EE , T;} » the lines L, satisfying condition (*), As

in §3 it fallows that g(K) is a measure of asymmetry; obviously 3 f(K)< g(K).
Probably g(K) <& 1/8 » but our arguments do not establish this,

(b) Similarly , if h(K; L ,L,,Lg) =—— for L, satisfying
E
1

E 1=l!:2=E3$V1=V2 =V, it follows from part (i) of our theorem that h(K)< 1/8
with equality only if K is a triangle. Also, h(K)=0 if K is centrally

symmetric., One may conjecture that h(K)=0 only for centrally symmetri¢ K,

although no proof of this seems to be known,

(c) It would be interesting to investigate the analogs of
f(K) in higher dimensions, It seems that one reasonable generalization to E:3
would consist in asking for the maximum of the volume of the central tetra-
hedron if its bounding planes are supposed to satisfy conditions of the type
¥all vertex regions have the same volume, and so do all edge regions

and vertex :regions ", and possibly some inequalities of the type (*).
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(d) Our theorem obviously implies the following statement:
For any convex body K in the plane, and any lines L1'L2'L3'
satisfying (*) we have OS %{ %9 . Equality on the left holds if
and only if K is centrally symmetric, and on the right if and only
if K is a triangle. Thus % is another measure of asymmetry .
It is interesting to note that the direct proof of %é %9 seems to

be more complicated than that of our theorem.
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